导读:第一篇:高一数学月考总结反思 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的... 如果觉得还不错,就继续查看以下内容吧!
此文《高一数学月考总结反思(精选10篇)》由作文录「Zwlu.Com」小编推荐,供大家学习参考!
第一篇:高一数学月考总结反思
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
第二篇:高一数学月考总结反思
开学一个多月了,10月9日进行了七年级数学月考,考试批阅后,感觉无论是课堂教学效果还是学生的学习成绩都不容乐观。尤其是在本次月考考试中,暴露出学生对计算题掌握不牢,练习不够,运用知识点十分不熟练,思维缺乏想象能力和创造性。为了寻找差距,弥补不足,现对这次考试总结如下:
一、试卷分析:
1、从整体上看,本次试题难度适中,符合学生的认知水平。试题注重基础计算,内容紧密联系生活实际,有利于考察数学基础和基本技能的掌握程度,有利于教学方法和学法的引导和培养。
2、不足之处是:(1)计算不过关,六道计算题错误率高,有理数的加、减、乘、除的法则掌握不够牢固,特别是对计算的方法缺乏灵活性:(2)不会具体问题具体分析,缺乏举一反三、触类旁通能力,缺乏灵活性:(3)不能够认真审题。(4)运用数学知识解决生活实际问题的能力不足。
二、原因分析:结合平时上课学生的表现与作业,发现我们在教学过程中存在以下几个误区。
1、思想认识不够。
相信学生的能力,而忽视了学生在学习过程中和解题的过程中存在的问题。直接导致在课堂教学过程中没有很好的结合学生的实际情况进行备课,忽视了部分基础知识不够扎实的学生,造成其学习困难增加,进而逐步丧失了学习数学的兴趣,为后面的继续教学增添了很大的困难。
2、备课过程中准备不足,没有充分认识到知识点的难度和学生的实际情况。
通过调阅部分中等生的考试试卷,发现中等生在答题的过程中,知识点混淆不清,解题思路混乱,不能抓住问题的关键。
3、对部分成绩较好的学生的监管力度不够,放松了对他们的学习要求。
本次考试不仅中等生的成绩下滑,部分中等学生勉强及格甚至不及格。究其原因是对该部分学生在课后的学习和练习的过程中,没有过多的去关注,未能及时发现他们存在的问题并给以指正,导致其产生骄傲自满的情绪,学习也不如以往认真,作业也马虎了事,最终成绩出现重大危机。
三、改进措施:
1、提高课堂教学效率。
根据年级学生的年龄和思维特点,充分利用学生的生活经验,设计生动有趣、直观形象的教学活动,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识知识。
2、重视知识的获得过程。
任何一类新知的学习都要力争在第一遍教学中让学生通过操作、实践、探索等活动充分地感知,使他们在经历和体验知识的产生和形成过程中,获取知识、形成能力。另外,课堂上教师应为学生留下思考的时间。好的课堂教学应当是富于思考的,学生应当有更多的思考余地。学习的效果最终取决于学生是否真正参与到学习活动中,是否积极主动地思考,而教师的责任更多的是为学生提供思考的机会,为学生留有思考的时间和空间。
3、关注学生中的弱势群体。
做好后进生的补差工作要从“以人为本”的角度出发,坚持“补心”与补课相结合,与学生多沟通,消除他们的心理障碍;帮助他们形成良好的学习习惯;加强方法指导;严格要求学生,从最基础的知识抓起;根据学生差异,进行分层教学;努力使每位学生在原有基础上得到最大限度的发展。
总之,在今后的教学过程中要以学生为重点,重在引导学生学会学习,让学生能乐学、爱学、好学,采取有针对性的补救措施,提高学生的基础知识和基本技能,加强对学生课后学习和练习的监管和督促力度,加强学生分析问题的能力,培养其创新思维能力,为今后的学习教学打好基础。
第三篇:高一数学月考总结反思
直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
2.1.1
1平面含义:平面是无限延展的
2平面的画法及表示
(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3三个公理:
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
符号表示为
A∈L
B∈L=>Lα
A∈α
B∈α
公理1作用:判断直线是否在平面内
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线=>有且只有一个平面α,
使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β=>α∩β=L,且P∈L
公理3作用:判定两个平面是否相交的依据
2.1.2空间中直线与直线之间的位置关系
1空间的两条直线有如下三种关系:
共面直线
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。
2公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线
a∥b
c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
4注意点:
①a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
第四篇:高一数学月考总结反思
考点要求:
1、几何体的展开图、几何体的三视图仍是高考的热点。
2、三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势。
3、重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型。
4、要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。
知识结构:
1、多面体的结构特征
(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的'直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。
正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。
(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。
2、旋转体的结构特征
(1)圆柱可以由矩形绕一边所在直线旋转一周得到。
(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。
(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。
(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。
3、空间几何体的三视图
空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。
三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。
4、空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,基本步骤是:
(1)画几何体的底面
在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。
(2)画几何体的高
在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。
第五篇:高一数学月考总结反思
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1)元素的确定性;
2)元素的互异性;
3)元素的无序性
说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2、集合的表示方法:列举法与描述法。
二、集合间的基本关系
1、“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2、“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2—1=0}B={—1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3。不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。
第六篇:高一数学月考总结反思
集合的含义
集合的中元素的三个特性:
元素的确定性如:世界上的山
元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集NN+整数集Z有理数集Q实数集R
列举法:{a,b,c……}
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}
语言描述法:例:{不是直角三角形的三角形}
Venn图:
4、集合的分类:
有限集含有有限个元素的集合
无限集含有无限个元素的集合
空集不含任何元素的集合例:{x|x2=—5}
第七篇:高一数学月考总结反思
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数。
第八篇:高一数学月考总结反思
当我看到数学成绩时,我哭了,透过泪水我看到了老师和父母对我的失望和惋惜!
这次的数学成绩太令我失望了,因为错的非常可惜。一道应用题,在4000米长的路两旁栽树,每隔100米栽一棵,两端都要栽,问一共能栽多少棵?我算式列对了,可惜把4000抄成了400,检查时竟也没检查出来,因此,那宝贵的5分就跟我说拜拜了。最后一题是画折线统计图,图我画对了,可画完后,我却放松了,描点的时候,我竟然把85描在了75上,虽说下面的都描对了,可一分也没给我。都是粗心惹得祸,看着卷子上那鲜红而又刺眼的红叉叉,我心里像打翻了五味瓶,说不出是什么味了。
我流着泪,垂头丧气地趴在桌子上,其实妈妈也很失望,可是为了不让我气馁,妈妈却又安慰我,鼓励我:这只是人生中的一次小测验而已,你要学会输得起,考得不好没关系,只要你能从中找到错误并吸取教训,你就是最棒的。考试已经过去了,要把所有的成绩都归零。不要因为数学、英语考得好而骄傲,也不要因为数学没考好就气馁。我们现在要做的就是要从失败的地方站起来,为以后的学习打好基础,时刻对自己充满信心,宝贝,妈妈相信你!
听了妈妈这番话,我的眼前顿时一片光亮,我内心的阴暗被驱逐走了。我又重新拾回了信心,对呀!哭不是目的,怎样克服粗心大意才是最重要的。妈妈经常看《哈佛女孩刘亦婷》,她笑着对我说:刘亦婷的妈妈说开朗活泼的孩子大多都有粗心的毛病,粗心不是学习态度的问题,而是学习能力的问题,既然能力不足就要采取相应的措施来防治。我说呀,开朗活泼没有错,错的是粗心。咱们今天就按照她们的方法来制定专项训练计划。我当然是迫不及待了,真想把这粗心一拳打走。变粗心为细心具体方法:
一、提高细心度的方法抄电话号码。找一个通讯录,在一分钟内抄写电话号码,做到左手指、右手抄,尽量做到抄得又快又不出错。连续对三次以上结束当天的训练,如果错了就要训练十分钟。
二、计算快又准的方法扑克牌速算。去掉牌里的大小王和J、Q、K,然后把牌洗乱,再掐着秒表一张张地迅速累加牌上的数字,直到熟练无比。这个方法我以前用过,可都没坚持下来,这次我一定要坚持下来。
三、写得快又好的方法抄写阿拉伯数字。在一分钟内尽可能快而又准确地抄写阿拉伯数字,具体方法同一。
成长的路上有曲折和险峻,有人失败有人成功。良好的计划是成功的一半,妈妈的鼓励是我前行的动力。努力+好的学习方法=成功 总有一天,我一定会超越自我……
第九篇:高一数学月考总结反思
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
顶点坐标
对称轴
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h0时,开口向上,当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
第十篇:高一数学月考总结反思
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,初中学习方法,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,高中地理,这点、两个垂足及原点所围成的矩形面积是定值,为k。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。
2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
结尾:非常感谢大家阅读《高一数学月考总结反思(精选10篇)》,更多精彩内容等着大家,欢迎持续关注作文录「Zwlu.Com」,一起成长!
编辑特别推荐:八年级数学教学总结,本学期教师教学教研工作总结,儿童保健科年终总结范文,小学教师教育教学经验总结,公司年终总结发言稿, 欢迎阅读,共同成长!