作文录,一手好文,受用一生

高三数学高考教案

作者:南黎辰2023-08-24 06:35:02

导读:高三数学高考教案 篇一 一、教学内容分析 二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面... 如果觉得还不错,就继续查看以下内容吧!

此文《高三数学高考教案(精选6篇)》由作文录「Zwlu.Com」小编推荐,供大家学习参考!

  高三数学高考教案 篇一

  一、教学内容分析

  二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.

  二、教学目标设计

  理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.

  三、教学重点及难点

  二面角的平面角的概念的形成以及二面角的平面角的作法.

  四、教学流程设计

  五、教学过程设计

  一、 新课引入

  1.复习和回顾平面角的有关知识.

  平面中的角

  定义 从一个顶点出发的两条射线所组成的图形,叫做角

  图形

  结构 射线—点—射线

  表示法 ∠AOB,∠O等

  2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)

  3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容.

  二、学习新课

  (一)二面角的定义

  平面中的角 二面角

  定义 从一个顶点出发的两条射线所组成的图形,叫做角 课本P17

  图形

  结构 射线—点—射线 半平面—直线—半平面

  表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

  (二)二面角的图示

  1.画出直立式、平卧式二面角各一个,并分别给予表示.

  2.在正方体中认识二面角.

  (三)二面角的平面角

  平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,"二面角"也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?

  1.二面角的平面角的定义(课本P17).

  2.∠AOB的大小与点O在棱上的位置无关.

  [说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.

  ②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.

  ③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.

  3.二面角的平面角的范围:

  (四)例题分析

  例1 一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个 的二面角,求此时B、C两点间的距离.

  [说明] ①检查学生对二面角的平面角的定义的掌握情况.

  ②翻折前后应注意哪些量的位置和数量发生了变化, 哪些没变?

  例2 如图,已知边长为a的等边三角形 所在平面外有一点P,使PA=PB=PC=a,求二面角 的大小.

  [说明] ①求二面角的步骤:作—证—算—答.

  ②引导学生掌握解题可操作性的通法(定义法和线面垂直法).

  例3 已知正方体 ,求二面角 的大小.(课本P18例1)

  [说明] 使学生进一步熟悉作二面角的平面角的方法.

  (五)问题拓展

  例4 如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是 ,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是 ,沿这条路上山,行走100米后升高多少米?

  [说明]使学生明白数学既来源于实际又服务于实际.

  三、巩固练习

  1.在棱长为1的正方体 中,求二面角 的大小.

  2. 若二面角 的大小为 ,P在平面 上,点P到 的距离为h,求点P到棱l的距离.

  四、课堂小结

  1.二面角的定义

  2.二面角的平面角的定义及其范围

  3.二面角的平面角的常用作图方法

  4.求二面角的大小(作—证—算—答)

  五、作业布置

  1.课本P18练习14.4(1)

  2.在 二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离.

  3.把边长为a的正方形ABCD以BD为轴折叠,使二面角A-BD-C成 的二面角,求A、C两点的距离.

  六、教学设计说明

  本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程.“二面角”及“二面角的平面角”这两大概念的引出均运用了类比的手段和方法.教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学.

  高三数学高考教案 篇二

  一、指导思想

  今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。 提高学生的学习能力仍是我们的奋斗目标。 近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新 的原则。 高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现 了变知识立意为能力立意这一举措。 更加注重考查考生进入高校学习所需的基本素 养,这些问题应引起我们在教学中的关注和重视。

  二、 注意事项

  1、 高度重视基础知识,基本技能和基本方法的复习。

  “基础知识,基本技能和基本方法”是高考复习的重点。我们希望在复习课中 要认真落实 “基础练习”,并注意蕴涵在基础知识中的能力因素,注意基本问题中 的能力培养。 特别是要学会把基础知识放在新情景中去分析,应用。

  2、 高中的‘重点知识’在复习中要保持较大的比重和必要的深度。

  原来的重点内容函数、不等式、数列、向量、立体几何,平面三角及解析几何 中的综合问题等。 在教学中,要避免重复及简单的操练。新增的内容:算法、概率等 内容在复习时也应引起我们的足够重视 。总之高三的数学复习课要以培养逻辑思维 能力为核心,加强运算能力为主体进行复习。

  3、 重视‘通性、通法’的落实。

  要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、 习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法 和评价方案。

  4、 认真学习《_省2023 年高考考试说明》,研究近三年的高考试题,提高复习课 的效率。

  《考试说明》是命题的依据,复习的依据。 高考试题是《考试说明》的具体体 现。 只有研究近年来的考试试题,才能加深对《考试说明》的理解,找到我们与命 题专家在认识《考试说明》上的差距。 并力求在二轮复习中缩小这一差距,更好地 指导我们的复习。

  5、 渗透数学思想方法,培养数学学科能力。

  《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。 我们在 复习中要加强数学思想方法的复习, 如转化与化归的思想、函数与方程的思想、分 类讨论的思想、数形结合的思想。 以及配方法、换元法、待定系数法、反证法、数 学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。

  6、 二轮复习课中注意新的目标定位。

  ① 培养学生搜集和处理信息的能力;

  ② 激发学生的创新精神;

  ③ 培养学生在学习过程中的的合作精神;

  ④ 激活显示各科知识的储存,尝试相关知识的灵活应用及综合应用。

  三、知识和能力要求

  1、知识要求 对知识的要求由低到高分为三个层次,依次是知道和感知、理解和掌握、灵活 和综合运用,且高一级的层次要求包括低一级的层次要求。

  (1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识或初步的 理解,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。

  (2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻 画或解释、举例说明、简单的变形、推导或证明、抽象归纳,并能利用相关知识解 决有关问题。

  (3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识 分析和解决较为复杂的或综合性的数学现象与数学问题。

  2、能力要求

  能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推 理论证能力以及实践能力和创新意识。

  (1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件, 寻找与设计合理、简捷运算途径。

  (2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息, 并作出正确的判断;能根据要求对数据进行估计和近似计算。

  (3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关 系;会运用图形与图表等手段形象地揭示问题的本质。

  (4)抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定 的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。

  (5)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学 命题真实性。

  (6)应用意识和实践能力:能够对问题所提供的信息资料进行归纳、整理和分类, 将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题。

  (7)创新意识和能力:能够独立思考,灵活和综合地运用所学数学的知识、思想 和方法,提出问题、分析问题和解决问题。

  四、学生情况分析:

  1 基础知识掌握情况分析: 高三一部11、12 班大部分学生基础知识掌握情况较差,计算能力不强,一些基 本的题型都不能自如的解决。通过一段的一轮复习,大部分学生对复习过的公式, 定理、法则都有了一定的认识与理解。基本能够记住该记公式,但对于没有复习的 部分,还是有一定的欠缺。表现为一些基本的公式、法则、定理等都忘掉了。

  2 学习态度情况分析: 有相当一部分同学学习态度极为不端正,主要表现为:

  (1)缺乏上进心,有相当一部分同学信心不足,没有必胜的勇气和信心。

  (2)不能按时完成作业,有抄袭或只是解决一些简单的问题而缺乏深入研究难题的 习惯。

  (3)缺乏自主复习的习惯,大部分同学只是在等老师引导进行一轮复习,而不能够 自己动手搞好提前复习,表现在考试(或作业)中遇到了没有复习的试题时,显得 毫无办法。

  (4)缺乏动手能力及动手习惯,对复习过的知识不能及时的进行巩固、练习,所发 的讲义、练习卷等不能够及时、认真填写,导致对复习过的知识掌握的熟练程度不 够。

  3 复习方式、方法分析:

  (1)缺少科学有效的复习方法,有相当一部分同学没有改错本,在一些爱错的地方 不断的犯错。不能够做到“吃一堑、长一智”。

  (2)一些同学不会听课,不会记笔记。上课时,整堂忙于记笔记,而忽视听讲,不 注意听思路的分析及探索过程。

  (3)不注意归纳知识,复习到的只是一些零散的知识,而不是有效的知识、方法体 系,显得很笨。

  (4)不注意经常回顾,对复习过的知识置之千里,而不去经常巩固、练习。时间长 了,又“生锈”了。

  五、复习对策教学措施

  1、尽快帮助学生树立信心!

  2、教给学生科学的复习习惯和复习方法。

  3、坚持基础知识训练。

  4、对高考要考察的六类解答问题,一定要认真做好专题复习和训练; 每周训练两套模拟试题;每天做好专题训练的配套作业。

  六、教学参考进度

  1、 2 月10 日至4 月20 日为第二轮复习阶段。这一轮的复习方式是综合训练与专 题总结并举,在每周两次综合练习的基础上穿插专题总结;

  2、 4 月21 日至5 月20 日为第三轮复习阶段。这一阶段主要以综合训练为主。每 周至少做三套综合练习题,题目来源为山东省各地市的一、二轮模拟题。

  3、 5 月21 日至6 月7 日为回扣课本阶段。这一阶段主要根据第三轮综合练习中 的问题回顾课本,以达到进一步落实升华的目的。

  七、二轮复习资料编写专题内容及分工安排

  (一)专题分工 专题一:集合与简单逻辑用语------邓光珍 专题二:《函数与导数》---张福平 专题三:《三角函数及解三角形》----王富香 专题四:《数列》----姜守芹 专题五:《立体几何》----高吉泉 专题六:《解析几何(穿插向量)》----赵来伟 专题七:《概率与统计》----梁建国 专题八:《导数与积分》----梁建国 专题九:《思想方法与选择、填空题的解法》---高吉泉

  (二)编写专题的基本要求:

  1、专题以高考命题趋势、考点透视、知识框架题目、例题、专项训练的形式出 现,要精选题目,要有一定的综合性,难度要达到高考的要求,不能降低要求。

  2、每个专题约4 天时间完成(包括过关测试),采用讲练结合,以练为主。

  3、各专题的题量要根据本专题的地位及难易程度,既要有小题,也要有大题。

  4、每个专题在复习过程中要让学生理清本专题的常考考点、高考地位,高考分 值、主要题型、高考热点、重点等。 在第二轮复习的强化训练中,根据学生的实际情况,以强化训练为主。

  在强化训 练中,命题一定要针对学生的实际情况,有针对性地命题,难度要适易,尤其中低 档强化训练题为主,不要过于拔高要求,各层次的训练都要狠抓基础,针对高考的 方向,切实做到通过强化训练,使学生的数学成绩能得到稳步提高。在强化训练的 试卷讲评中,要提前探讨和思考,让学生有回顾的余地,切忌发下试卷就讲评,且 要有针对性的讲解,老师备课一定要备学生,尽可能一节课的时间讲评完试卷,每 次的训练中要总结得与失,出现的问题要及时得到解决,问题较多的还要多次重复 考及多次训练。

  八、本学期备课内容及进度: 周次 、内容 、目的、要求 重点、考点热点

  1 市第二次统考 试卷讲评

  2 专题一集合与简单逻辑用语 知识框架、双基 集合运算和充分 必要条件

  3 专题二函数与导数 知识框架、双基 函数不等式综合 应用

  4 第三专题角函数及解三角形 知识网络、双基 数列综合应用

  5 第四专题数列 函数创新探究 函数创新综合

  6 专题五立体几何 回扣双基、知识框架 立体几何综合 应用

  7 专题六解析几何 知识框架、回扣双基 解析几何综合应 用

  8 市三次统考 试卷讲评

  9 第七专题概率与统计 知识框架、双基 概率统计综合

  10 第八专题导数应用和积分 双基、知识要点 导数综合应用

  11 第九专题思想方法和选、填题解 法 回扣基本方法和思想 数形结合、分类 讨论、化归转化、 函数与方程

  12 市四次统考 试卷讲评

  13 考前模拟训练 综合训练、应试能力和技巧 重点、热点讲评

  14 回扣课本、反馈双基 查缺补漏,回归课本

  15 回扣课本、反馈双基 回归课本,考试方法

  16 高考

  高三数学高考教案 篇三

  整体设计

  教学分析

  本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.

  通过本节课的学习, 让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.

  在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.

  三维目标

  1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.

  2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.

  3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.

  重点难点

  教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.

  教学难点:准确比较两个代数式的大小.

  课时安排

  1课时

  教学过程

  导入新课

  思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.

  思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.

  推进新课

  新知探究

  提出问题

  1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?

  2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?

  3数轴上的任意两 点与对应的两实数具有怎样的关系?

  4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?

  活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a

  教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.

  实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.

  实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA

  实例3:若一个数是非负数,则这个数大于或等于零.

  实例4:两点之间线段最短.

  实例5:三角形两边之和大于第三边,两边之差小于第三边.

  实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.

  实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.

  教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

  教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.

  |AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

  |AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.

  实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.

  对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.

  讨论结果:

  (1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.

  (4)对于任意两个实数a和b,在a=b,a>b,a应用示例

  例1(教材本节例1和例2)

  活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.

  点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.

  变式训练

  1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()

  A.f(x)>g(x) B.f(x)=g(x)

  C.f(x)

  答案:A

  解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

  2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.

  解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

  ∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.

  例2比较下列各组数的大小(a≠b).

  (1)a+b2与21a+1b(a>0,b>0);

  (2)a4-b4与4a3(a-b).

  活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.

  解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.

  ∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.

  (2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

  =(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

  =-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

  ∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),

  又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

  ∴a4-b4<4a3(a-b).

  点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.

  变式训练

  已知x>y,且y≠0,比较xy与1的大小.

  活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.

  解:xy-1=x-yy.

  ∵x>y,∴x-y>0.

  当y<0时,x-yy<0,即xy-1<0. ∴xy<1;

  当y>0时,x-yy>0,即xy-1>0.∴xy>1.

  点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.

  例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了?请说明理由.

  活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法.

  解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a

  由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,

  因此a+mb+m>ab≥10%.

  所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.

  点评:一般地,设a、b为正实数,且a

  变式训练

  已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()

  A.a1+a8>a4+a5  B.a1+a8

  C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定

  答案:A

  解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

  =a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

  ∵{an}各项都大于零,∴q>0,即1+q>0.

  又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

  课堂小结

  1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.

  2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.

  作业

  习题3—1A组3;习题3—1B组2.

  设计感想

  1.本节设计关注了教学方法 的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.

  2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.

  3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.

  高三数学高考教案 篇四

  一、教学内容分析

  本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

  二、教学目标设计

  1.理解组合的意义,掌握组合数的计算公式;

  2.能正确认识组合与排列的联系与区别

  3.通过练习与训练体验并初步掌握组合数的计算公式

  三、教学重点及难点

  组合概念的理解和组合数公式;组合与排列的区别.

  四、教学用具准备

  多媒体设备

  五、教学流程设计

  

  六、教学过程设计

  一、 复习引入

  1.复习

  我们在前几节中学习了排列、排列数以及排列数公式

  定 义

  特 点

  相同排列

  公 式

  排 列

   以上由学生口答.

  2.引入

  那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?

  这是一个排列问题 

  若改为:构成的线段有几条?则为 ,

  其实亦可用另一种方法解决,这就是组合.

  二、学习新课

  探究性质

  1. 组合定义: P16

  一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.

  高三数学高考教案 篇五

  一 教材分析

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

  根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

  能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  二 教法

  根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

  三 学法:

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四 教学过程

  第一:创设情景,大概用2分钟

  第二:实践探究,形成概念,大约用25分钟

  第三:应用概念,拓展反思,大约用13分钟

  (一)创设情境,布疑激趣

  “兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△ABC中,已知下列条件,解三角形.

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列条件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  学生板演,老师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定理,体现了数形结合的数学思想。

  2.它表述了三角形的边与对角的正弦值的关系。

  3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

  五 板书设计

  板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

  高三数学高考教案 篇六

  教学目标

  (1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;

  (2)能结合树形图来帮助理解加法原理与乘法原理;

  (3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;

  (4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;

  (5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。

  教学建议

  一、知识结构

  二、重点难点分析

  本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。

  加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。

  两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是, 做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。

  三、教法建议

  关于两个计数原理的教学要分三个层次:

  第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).

  第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):

  ①用0,1,2,……,9可以组成多少个8位号码;

  ②用0,1,2,……,9可以组成多少个8位整数;

  ③用0,1,2,……,9可以组成多少个无重复数字的4位整数;

  ④用0,1,2,……,9可以组成多少个有重复数字的4位整数;

  ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;

  ⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.

  第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.

  教学设计示例

  加法原理和乘法原理

  教学目标

  正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.

  教学重点和难点

  重点:加法原理和乘法原理.

  难点:加法原理和乘法原理的准确应用.

  教学用具

  投影仪.

  教学过程设计

  (一)引入新课

  从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.

  今天我们先学习两个基本原理.

  (二)讲授新课

  1.介绍两个基本原理

  先考虑下面的问题:

  问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?

  因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.

  这个问题可以总结为下面的一个基本原理(打出片子——加法原理):

  加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.

  请大家再来考虑下面的问题(打出片子——问题2):

  问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?

  这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.

  一般地,有如下基本原理(找出片子——乘法原理):

  乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法.

  2.浅释两个基本原理

  两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.

  比较两个基本原理,想一想,它们有什么区别?

  两个基本原理的区别在于:一个与分类有关,一个与分步有关.

  看下面的分析是否正确(打出片子——题1,题2):

  题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.

  1~10中一共有N=4+2+1=7个合数.

  题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?

  第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.

  题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.

  从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.

  (此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)

  进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.

  如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.

  也就是说:类类互斥,步步独立.

  (在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)

  (三)应用举例

  现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.

  例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.

  (1)若从这些书中任取一本,有多少种不同的取法?

  (2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?

  (3)若从这些书中取不同的科目的书两本,有多少种不同的取法?

  (让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)

  (1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是

  N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.

  (2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是N=m1×m2×m3=3×5×6=90.故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.

  (3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是N=3×5+3×6+5×6=63.即,从书架任取不同科目的书两本的不同取法有63种.

  例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?

  解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N=4×5×5=100.

  答:可以组成100个三位整数.

  教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础.

  (四)归纳小结

  归纳什么时候用加法原理、什么时候用乘法原理:

  分类时用加法原理,分步时用乘法原理.

  应用两个基本原理时需要注意分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.

  (五)课堂练习

  P222:练习1~4.

  (对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

  (六)布置作业

  P222:练习5,6,7.

  补充题:

  1.在所有的两位数中,个位数字小于十位数字的共有多少个?

  (提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

  2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.

  (提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式)

  3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?

  (提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)

  4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?

  (提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.

  (1)N=5+2+3;(2)N=5×2+5×3+2×3)

结尾:非常感谢大家阅读《高三数学高考教案(精选6篇)》,更多精彩内容等着大家,欢迎持续关注作文录「Zwlu.Com」,一起成长!

编辑特别推荐:教师教学效果的个人评价2024初中英语公开课教学反思高中体育教学反思随笔高中生物课堂教学反思初中语文开学第一课教案, 欢迎阅读,共同成长!